The influence of intraocular pressure and accommodation amplitude on refractive status in school-age children
Main Article Content
Keywords
refractive status, intraocular pressure, accommodation amplitude, school-age children
Abstract
Introduction: Refraction is the ability of the eye to refract light, which is divided into 3 categories of refractive status (RS), namely emmetropia, myopia, and hypermetropia. Increasing age in school-age children is also accompanied by the development of intraocular pressure (IOP) and accommodation amplitude (AA) values, which are assumed to affect retinal sensitivity (RS). Therefore, this study aims to investigate the effects of partial and simultaneous interactions between age, intraocular pressure (IOP), and age-related macular degeneration (AA) on retinal sensitivity (RS) in school-age children.
Methods: This cross-sectional study utilized 236 eyeballs from children aged ≤18 years who consented to participate and completed all eye examinations at the Al-Ikhlas Singosari Orphanage in Malang. Variables included age, IOP, AA, and RS converted into spherical equivalent (SE). Data analysis employed partial and simultaneous regression tests.
Result: Partially, increased age, IOP, and decreased AA influenced myopia (6.6%, 33.3%, and 19.1%, respectively), while reduced age, increased IOP, and increased AA influenced hypermetropia (14.3%, 47.2%, and 12.2%). Simultaneously, these variables affected myopia RS by 0.6% and hypermetropia RS by 2.6%, though not significantly.
Conclusion: Age, IOP, and AA show effects on myopia and hypermetropia RS both partially and simultaneously, but the influence is small and insignificant.
References
2. Brar VS, Law SK, Lindsey JL, Mackey DA, Schultze RL, Silverstein E, et al. Editorial Committee Fundamentals and Principles of Ophthalmology 2 BCSC ® Basic and Clinical Science Course TM. 2022.
3. Mohammed Dhaiban TS, Ummer FP, Khudadad H, Veettil ST. Types and Presentation of Refractive Error among Individuals Aged 0–30 Years: Hospital-Based Cross-Sectional Study, Yemen. Adv Med. 2021 Jul 5;2021:1–7.
4. Hou W, Norton TT, Hyman L, Gwiazda J, Deng L, Grice K, et al. Axial elongation in myopic children and its association with myopia progression in the correction of myopia evaluation trial. Eye Contact Lens. 2018;44(4):248–59.
5. Hashemi H, Fotouhi A, Yekta A, Pakzad R, Ostadimoghaddam H, Khabazkhoob M. Global and regional estimates of prevalence of refractive errors: Systematic review and meta-analysis. Vol. 30, Journal of Current Ophthalmology. Iranian Society of Ophthalmology; 2018. p. 3–22.
6. Amalia H. Ketepatan hasil pengukuran keratometri dengan ukuran astigmatisme pada ametropia. Jurnal Biomedika dan Kesehatan [Internet]. 2020;3(3). Available from: https://doi.org/10.18051/JBiomedKes.2020.v3.131-136
7. Mukazhanova A, Aldasheva N, Iskakbayeva J, Bakhytbek R, Ualiyeva A, Baigonova K, et al. Prevalence of refractive errors and risk factors for myopia among schoolchildren of Almaty, Kazakhstan: A cross-sectional study. PLoS One. 2022 Jun 1;17(6 June).
8. Machiele RMM and PBC. Intraocular Pressure. StatPearls Publishing, Treasure Island (FL) . 2022;
9. Jonas JB, Aung T, Bourne RR, Bron AM, Ritch R, Panda-Jonas S. Glaucoma. The Lancet. 2017 Nov;390(10108):2183–93.
10. Johnson M, McLaren JW, Overby DR. Unconventional aqueous humor outflow: A review. Vol. 158, Experimental Eye Research. Academic Press; 2017. p. 94–111.
11. Shukla Y. Accommodative anomalies in children. Vol. 68, Indian Journal of Ophthalmology. Wolters Kluwer Medknow Publications; 2020. p. 1520–5.
12. Knaus KR, Hipsley AM, Blemker SS. The action of ciliary muscle contraction on accommodation of the lens explored with a 3D model. Biomech Model Mechanobiol. 2021 Jun 1;20(3):879–94.
13. Logan NS, Radhakrishnan H, Cruickshank FE, Allen PM, Bandela PK, Davies LN, et al. IMI accommodation and binocular vision in myopia development and progression. Vol. 62, Investigative Ophthalmology and Visual Science. Association for Research in Vision and Ophthalmology Inc.; 2021.
14. Smotherman C, Brennan NA, Cheng X, Shamp W, Butterfield R, Bullimore MA. Influence of age and race on refractive error progression in myopic children. Invest Ophthalmol Vis Sci. 2023 Jun 1;64(8):811.
15. Joseph E, Ck M, Kumar R, Sebastian M, Suttle CM, Congdon N, et al. Prevalence of refractive errors among school-going children in a multistate study in India. Br J Ophthalmol. 2023 Dec 18;108(1):143–51.
16. Han F, Li J, Zhao X, Li X, Wei P, Wang Y. Distribution and analysis of intraocular pressure and its possible association with glaucoma in children. Int Ophthalmol. 2021 Aug;41(8):2817–25.
17. Al-Fajri MW, Khoma Fatmawati N, Zubaidah M. HUBUNGAN STATUS REFRAKSI DENGAN TEKANAN INTRAOKULAR PADA PASIEN GLAUKOMA. Jurnal Medika Karya Ilmiah Kesehatan. 2022;7(2).
18. Oneta R, Sayuti K, Wati R, Mata Rumah Sakit Umum Daerah Haji Abdul Manap Jambi B, Studi Ilmu Kesehatan Mata P. HUBUNGAN MIOPIA DENGAN AMPLITUDO AKOMODASI PADA SISWA SMP NEGERI DI KOTA PADANG. Jambi Medical Journal: Jurnal Kedokteran dan Kesehatan. 2023;11(1):16–25.
19. Dewi LGA, Handayani AT, Manuaba IBP, Triningrat AAMP. Karakteristik amplitudo akomodasi mata pada anak sekolah dasar dengan kelainan refraksi di Kabupaten Badung, Bali, Indonesia. Intisari Sains Medis. 2020 Dec 1;11(3):1381–6.
20. Yan L, Huibin L, Xuemin L. Accommodation-induced intraocular pressure changes in progressing myopes and emmetropes. Eye (Lond). 2014 Nov;28(11):1334–40.
21. Grzybowski A, Kanclerz P, Tsubota K, Lanca C, Saw SM. A review on the epidemiology of myopia in school children worldwide. BMC Ophthalmol. 2020 Jan 14;20(1):27.
22. Susanti D, Aisyiyah J’, 244 P|. DETERMINAN KEJADIAN MIOPIA PADA SISWA SEKOLAH DASAR. Vol. 8. 2023.
23. Goldschmidt E, Jacobsen N. Genetic and environmental effects on myopia development and progression. Eye (Lond). 2014 Feb;28(2):126–33.
24. Dutheil F, Oueslati T, Delamarre L, Castanon J, Maurin C, Chiambaretta F, et al. Myopia and Near Work: A Systematic Review and Meta-Analysis. Int J Environ Res Public Health. 2023 Jan 3;20(1):875.
25. Shah RL, Huang Y, Guggenheim JA, Williams C. Time Outdoors at Specific Ages During Early Childhood and the Risk of Incident Myopia. Invest Ophthalmol Vis Sci. 2017 Feb 1;58(2):1158–66.
26. Tideman JWL, Polling JR, Voortman T, Jaddoe VW V, Uitterlinden AG, Hofman A, et al. Low serum vitamin D is associated with axial length and risk of myopia in young children. Eur J Epidemiol. 2016 May;31(5):491–9.
27. Martinez-Perez C, Alvarez-Peregrina C, Brito R, Sánchez-Tena MÁ, Grupo de Investigação Optovisão Isec Lisboa. The Evolution and the Impact of Refractive Errors on Academic Performance: A Pilot Study of Portuguese School-Aged Children. Children (Basel). 2022 Jun 6;9(6).
28. Latif MZ, Hussain I, Afzal S, Naveed MA, Nizami R, Shakil M, et al. Impact of Refractive Errors on the Academic Performance of High School Children of Lahore. Front Public Health. 2022 May 6;10.
29. Darusman KR, Basrowi RW, Wilar Y, Hartono I, Moeloek NF. The Post-pandemic Prevalence of Refractive Errors among Elementary School Children in Jakarta. Open Public Health J. 2023 Jan 5;16(1).
30. Tharwat E, Hassanein M, Ezzeldin ER, Soliman HB, Eltantawy B, Elgazzar AF, et al. Effect of cycloplegia on the refractive status of children. African Vision and Eye Health. 2024 Oct 10;83(1).
31. madhuni khairi. Impact of refractive errors and their correction on academic performance of school_age children. 2023.